
Weighted Method Signatures Fingerprints
Stéphane Leblanc

School of IT and Engineering, University of Ottawa
800 King Edward Avenue

Ottawa, Ontario, Canada, K1N 6N5
(001) 613-562-5800 #6699

slebl089@uottawa.ca

ABSTRACT
A software fingerprint is a set of distinctive characteristics used to
identify and compare programs. This paper presents a fingerprint
technique based on the characteristics of method signatures. The
proposed technique considers uncommon method signatures as
being more effective than common ones to compare programs.
The implementation of this technique is limited to Java programs,
but it could be implemented for other programming languages as
well. The experiments carried out to evaluate the technique
demonstrated that it was credible, resilient and scalable.

Categories and Subject Descriptors
K.5.1 [Legal Aspects of Computing]: Hardware/Software
Protection - Proprietary rights

General Terms
Legal Aspects

Keywords
Keywords are your own designated keywords.

1. INTRODUCTION
Copyright infringement of software is a widespread illegal
practice in our era. Detecting software copyright infringement is
challenging because it is difficult to establish if there is a copy
relationship between two programs. It follows that the copyright
laws are rarely enforced even if the software copyright
infringement has a huge economic impacts on the world of
software development. This paper presents a technique that can be
used to determine if a program is likely to be a copy of another.
Consequently, the technique is a useful tool to detect copyright
infringement.

1.1 Problem
The root cause of the problem is the impossibility to define what
makes two pieces of software equal. Comparing something with a
natural and durable identifier is simple. For instance, a bank
account has an account number. An account number is a natural
and durable identifier of an account because it will not change

over time and will always refer to the same account. When two
things do not have natural durable identifiers, they are usually
compared according to their characteristics. For instance, there
are no such things as date IDs (i.e. there are no natural durable
identifiers for dates as is the case with bank accounts), but two
dates with the same year, month and day are considered to be the
same.

Unfortunately, programs do not possess any durable and unique
identifiers and the intrinsic nature of all their characteristics is to
change over time. Two versions of the same program do not have
the same characteristics, but they are still considered to be the
same program. On top of that, applying semantics-preserving
code transformations, also known as obfuscation, can substitute
some characteristics of a program with equivalent ones.
Developers who do not want to share their source code often use
these transformations to make the source code of their program
almost impossible to read. Such transformations are an essential
tool to protect the intellectual property of developers. On the
other hand, these transformations can also act as a camouflage for
developers who infringe copyrights. If a program is difficult to
read, then it is also difficult to compare it with other programs. In
this context, detecting software copyright infringement is not a
simple task.

1.2 Goals
The proposed technique must be able to measure how likely a
program is to be a copy of another and must exhibit the five
following properties:

Credibility

“Let p and q be independently written sets of modules which may
accomplish the same task. We say f is a credible measure if f(p)
!= f(q)” [1].

Resilience to Natural Change

Let p0 be a set of modules obtained by creating a derivative work
from p. We say that f is resilient to natural change if f(p) = f(p0).

Resilience to semantics-preserving transformations

“Let p0 be a set of modules obtained from p by applying
semantics-preserving transformations T. We say that f is resilient
to T if f(p) = f(p0)” [2].

Running Time Scalability

Let n be the size of the set of modules p, we say that the running
time of f is scalable if the average case running time complexity
of f(p) is at least O(n) (linear).

Memory Usage Scalability

Let n be the size of the set of modules p, we say that the memory
usage of f is scalable if the average case memory usage
complexity of f(p) is at least O(n) (linear).

1.3 Objectives
Credibility, resilience and scalability cannot be completely
reached simultaneously because they are conflicting goals. There
are no doubts that considering only completely identical programs
as being in a copy relationship would be credible. Such a
technique is not likely to produce false positives. On the other
hand, this technique would not be resilient. The slightest
transformation would prevent this technique from working
properly. Also, a simplistic technique that only compares the size
of the files of two programs would be able to compare two large
programs as effectively as two small ones but would be neither
credible nor resilient. The first objective of the proposed
technique is to provide good trade-offs between these conflicting
goals.

Its second objective is to be cohesive. Techniques based on a
specific measure (as opposed to those that summarize many kinds
of measures) are easier to use in conjunction with other
techniques. Since it is almost impossible for a technique to meet
credibility, resilience and scalability simultaneously, being able to
use the proposed technique easily with other existing techniques
is definitely an asset.

1.4 Outline
The proposed technique is based on weighted method signatures
(WMS) fingerprints. A fingerprint is a subset of all characteristics
of a program. To be effective, fingerprints must contain
distinctive characteristics that are not likely to change. Method
signatures possess such characteristics; thus they constitute a solid
base for the proposed technique. Some method signatures are
more likely to be present in a class than others. For instance, a
class often contains a parameterless method that returns void, but
seldom contains a method that returns an array of DateFormat.
The WMS technique gives more importance to rare method
signatures than to common ones. Also, the WMS technique
extracts data related to method signatures from Java binary files
(.class). Therefore, the technique can only be used to compare
Java programs. No data is extracted from the source code, the
documentation or any other resource files because programs are
often distributed in binary form only.

2. BACKGROUND
Many open source toolkits such as Stigmata [3], JBirth [4] and
SandMark [5] use software fingerprints to compare Java
programs. With its 16 birthmark techniques, Stigmata is the most
comprehensive open source birthmark toolkit available for Java.

No technique found in these toolkits can be considered equivalent
to the WMS technique. The Used Classes (UC) technique (and its
variants) is the closest to the WMS technique. The UC technique
is based on the concept of well-known classes, which is similar to
the concept of identifiable types used in the WMS technique. The
UC technique relies on the list of distinct well-known classes used
by a class to identify and compare classes. Compared to the WMS
technique, the UC technique can be considered a coarse-grained
approach. The UC technique uses class-level attributes to

compare programs while the WMS technique uses method-level
attributes. Moreover, the UC technique ignores types that are not
considered well-known such as primitive types and user-defined
types. Furthermore, it does not take into account the fact that
some types are used more frequently than others.

3. DESIGN

3.1 Identifiable Types
Types are identified by their full name (i.e. their namespace and
their name). For example, java.lang.String uniquely
identifies the type String from any other Java types. Semantics-
preserving code transformations can easily alter the full name of
types if they are not used from outside of a program. In contrast,
they cannot easily alter types contained in the Java system
libraries (i.e. the primitive types and the types with a namespace
that starts with .java or .javax) because they can be used by
any Java programs.

The WMS technique considers the types contained in the Java
system libraries as identifiable. These types can be identified by
their full name. On the other hand, other types are considered
unidentifiable because they are likely to be altered by semantics-
preserving transformations. The WMS technique can distinguish
identifiable types from unidentifiable types but cannot distinguish
one unidentifiable type from another. Arrays are also identifiable;
therefore, int, int[] and int[][] are three distinct types.

3.2 Selectivity
The WMS technique uses selectivity points to measure the weight
of a type. Some types are used more frequently than others in
Java. The more often a type is likely to be used in a Java program,
the less its selectivity. Some applications make more intensive use
of some types than others. For instance, graphical user interface
applications and command line applications do not use the same
types as frequently. Prior to the implementation of the technique,
a statistical analysis of the type used in 192 standard eclipse
plugins was carried out to overcome this problem. The analyzed
plugins were assumed to be a representative sample of Java
programs in general.

Selectivity points are based on this statistical analysis. The
collected data demonstrated that the most infrequently used type
was proportionally used 139 thousand times less frequently than
the most frequently used one. If selectivity points were
proportionally assigned based on the likelihood of a type to be
used, the results would be very credible. However, the results
would not be resilient because changing only one very
infrequently used type would have too much impact on the
fingerprint. On the other hand, ignoring that some types are used
less frequently than others would harm the credibility of the
technique. Selectivity categories solve this problem by providing
a trade-off between credibility and resilience. Arbitrary decisions
based on the statistical data and motivated by the need to
conciliate credibility and resilience were made to define the
number of selectivity categories and the number of selectivity
points assigned to each one. Selectivity categories are presented
in Table 1.

Table 1. Selectivity Categories

Category
Name

Occurrenc
e

Per Type

Num. of
Types

Total
Occurrenc

e

Selectivit
y Points

Very
Frequent

>= 50,000 2 230,126 1

Frequent < 50,000 6 159,391 2

Normal < 5,000 21 30,816 4

Infrequen
t

< 500 47 7,173 8

Very
Infrequen
t

< 50 314 2,595 16

Total 390 430,101

These selectivity points are the foundation of the WMS technique.
It is not possible to compare fingerprints that use different
selectivity categories or different selectivity points. For the sake
of simplicity, the implementation of the WMS technique does not
allow to change the selectivity categories.

3.3 Fingerprints
Method names, parameters names and method modifiers are not
stored in the fingerprints because they are too vulnerable to
semantics-preserving transformations. Only the return type, the
parameters types and whether or not the method is static are taken
into account. This information is then hashed for smaller memory
consumption and faster comparison. Figure 1 illustrates the
parsing of a method.

Figure 1. Method Parsing

The selectivity of each method is also stored in the fingerprints.
The selectivity of a method is the sum of the selectivity of its
parameters. The previous method selectivity is computed as
follow:

S/void/?Unidentifiable/int/int[]/ZipOutputStream
=VeryFreq/VeryFreq/Freq/Normal/VeryInfrequ
=1+1+2+4+16
=24

Fingerprints also contain the selectivity of each class (which is the
sum of the selectivity of its methods) and the selectivity of the
Java archive (JAR) (which is the sum of the selectivity of its
classes). Moreover, contextual information such as the JAR name
and the name of classes are also included in the fingerprint.

Contextual information is not used to compare fingerprints;
therefore, it was excluded. However, the value added by the
contextual information has proven to be worth the extra bytes.
Figure 2 illustrates the content of a fingerprint.

JarFingerprint

JarName: String
NotSelectiveEnoughClassCount: Integer
NotLoadedClassCount: Integer
Selectivity: Integer

ClassFingerprint

ClassName: String
Index: Integer
Selectivity: Integer

MethodFingerprint

HashCode: Integer
Selectivity: Integer

Figure 2. Fingerprint Class Diagram

3.4 Comparison
When comparing two JARs, the WMS technique produces a
certainty percentage. This percentage represents how likely it is
for the original JAR to be completely included in the compared
JAR. If very strong evidence is found that 10% of the original
JAR is in a copy relationship with the compared JAR, the
certainty percentage will still be low because only a small portion
of the original JAR was copied.

The certainty percentage is computed as follows. First, the
method signature hash codes from two JARs are compared. The
WMS technique does not consider similar methods; methods are
either equal or different. Because the number of methods can be
very large, the amount of time required for the comparison and
the running time scalability of the WMS technique depend mostly
on its ability to compare methods efficiently. The algorithm used
to compare methods is inspired by the Merge-Join algorithm,
which is widely used in relational database management system to
quickly join large tables. The algorithm requires both method sets
to be previously sorted by key (i.e. method signature hash code
and class index). The method set is sorted when the fingerprints
are created to avoid resorting for each comparison. The algorithm
running time complexity is O(n) (linear) if all method keys are
unique and O(n2) (quadratic) if all method keys are identical. The
statistical analysis performed on Eclipse plugins demonstrated
that the method signatures are very diverse. Therefore, comparing
methods will tend to be linear.

The method comparison yields a matrix containing all potential
matches between the original and the compared classes.
Selectivity points are assigned to each potential class match. The
selectivity of a class match is the sum of the selectivity of its
matching methods.

To produce the certainty percentage, the next step is to identify
which class matches are the best. In order to do so, class matches
are sorted from the highest to the lowest selectivity. Then, the
JAR match selectivity is obtained by summing up the selectivity
of the best class matches. When the JAR match selectivity is
computed, each original class can only be matched with one
compared class and vice versa. The certainty percentage is

Hash

Parse

private static void getParamTypeName(

Runner runner,

int index,

int[] array,

ZipOutputStream out)

-1989692840

S/void/?Unidentifiable/int/int[]/ZipOutputStream

obtained by dividing the selectivity of the JAR match by the
selectivity of the original JAR.

3.5 Contextual Information
In addition to the certainty percentage, the WMS technique also
provides contextual information on the copy relationship between
two compared JARs. The selectivity point ratio that yielded the
certainty percentage and the reverse certainty percentage are part
of this contextual information. The reverse certainty percentage is
an estimate of how likely is the compared JAR to be completely
included in the original JAR. This is useful when the original JAR
is compared with less selective JARs.

Moreover, the name and high-level information on the JARs
involved in the comparison are provided. Also the contextual
information contains the 10 best class matches. The classes in this
list are the ones to start with if further analysis is required to
prove that copyright infringement has occurred. Also, this
information is useful to detect the partial inclusion of a JAR into
another one.

Figure 3. WMS Technique Output

3.6 Decisions made

3.6.1 Low Selectivity
The statistical analysis demonstrated that 66% of classes had less
than 16 selectivity points and that their impact was only 14% of
the total of selectivity points. Classes with low selectivity are
numerous, have a small impact on selectivity and are likely to

produce false positives when compared with other classes.
Therefore, excluding them produces a positive impact on each of
the goals. The price to pay is that the WMS technique cannot
compare JARs that are not selective enough; the WMS technique
would not have yielded accurate results for these cases anyway.
Out of the 192 standard eclipse plugins used for the statistical
analysis, only one was considered to be not selective enough.

A similar situation occurs when comparing two JARs yields
matches with less than 16 selectivity points. These matches are
considered to be an undesirable noise and are ignored by the
comparison algorithm.

3.6.2 Generic Types
Generic types are problematic from the perspective of the WMS
technique because they are highly selective and also vulnerable to
semantics-preserving transformations. Generics are all about type
safety at compile time. Therefore, replacing them with unsafe
types and using the appropriate type cast at runtime would
preserve the semantics of a program. To overcome this problem
the generic type arguments are ignored (e.g. List, List<int>
and List<List<CustomType>> are all equal).

3.6.3 Tolerance to Missing Dependencies
Java reflection is used to extract the method signature information
from the Java binary files (.class). In order to load a class, Java
reflection must be able to resolve all types used by this class. By
convention, the WMS technique can resolve any types contained
in JARs located in the same directory as the JAR from which the
fingerprint is generated. If unresolvable types prevent a class from
being loaded, it will be excluded from the fingerprint. A warning
will notify users that some classes were not loaded.

4. RESULTS
A series of experiments were carried out to measure if each goal
was met. The experiments were executed on a machine with an
Intel Core i7 920 CPU (2.65GHz), 6 GB of RAM and running
Windows Vista 64 bits.

Table 2. Credibility Experiment JARs

JAR Classes Methods
Category Name Size (KB) Selectivity Compared Excluded Not Loaded Compared

Bit Torrent Client Vuze [6] 13,545 136,843 2,174 5,550 13 32,307
Build Script Ant [7] 1,288 20,545 360 409 0 4,924
Code Coverage Cobertura [8] 443 8,414 57 64 1 3,065
Code Coverage CodeCover [9] 4,879 3,363 73 345 17 1,065
Code Coverage EclEmma [10] 485 807 27 41 2 242
DB Test Tool DbUnit [11] 587 8,248 175 196 14 1,306
Mp3 Player TMp3 [12] 171 2,524 49 40 0 397
Obfuscation Proguard [13] 658 13,502 231 310 1 3,590
Obfuscation Sandmark [14] 5,127 44,608 817 1,103 3 10,151
Object Mocking EasyMock [15] 109 3,463 32 46 5 481
Object Mocking JMock [16] 235 1,486 26 48 0 246
Programming Language Jython [17] 8,098 143,528 1,687 4,144 10 35,466
Test Sequencer Junit [18] 238 3,833 70 167 0 717
Text Editor JEdit [19] 3,902 44,388 677 455 0 5,929
Text Editor JExt [20] 1,524 15,337 280 161 0 1,886

4.1 Credibility
Fifteen different JARs were used to measure the credibility of the
WMS technique. Some of them accomplish similar tasks while
some others were written for completely different purposes. A
detailed list of the JARs used for the experiment can be found in
Table 2.

In order to be credible, the WMS technique must be able to
identify similar JARs without generating false positives. To
measure this ability, all possible JAR combinations were
compared using the WMS technique, leading to 225 comparisons
(15*15).

The 15 comparisons where the JAR was compared with itself all
yielded a certainty percentage of 100%. All of the 105
comparisons where the original JAR was compared with a smaller
one yielded very low certainty percentage. These comparisons
were not meaningful to measure credibility because the WMS
technique will always yield lower certainty percentages in such
cases. Therefore, these comparisons were not taken into account.

The 105 remaining comparisons did not generate any false
positives. All comparisons yielded a certainty percentage under
34%, except one. The comparison between JExt and JEdit (two
text editors) yielded a certainty percentage of 44.3%. However,
the contextual information reported that the original and the
compared class names were identical for the five best class
matches. The fact that similar classes with the same name were
identified provided strong evidence that the two sets of modules
had not been independently written. Therefore, the result of the
comparison between JExt and JEdit could not be considered a
false positive.

Figure 4. Certainty Percentage Distribution

4.2 Resilience to Natural Change
In order to be resilient to natural change, the WMS technique
must be able to detect the copy relationship between an original
work and a work derived from it. To measure this ability, seven
significant releases of JUnit were compared using the WMS
technique.

For each release (except one), the WMS technique was able to
recognize strong similitude between the JARs. For the release of
JUnit 4.0, the fact that the major digit was changed from 3 to 4
indicates that more than a minor revision was released. Also, the

contextual information reported that the original and the
compared class names were identical for the 10 best class
matches. Moreover, each of the 10 best class matches had a
certainty percentage of 100%.

Figure 5. Copy Relationship between JUnit Releases

4.3 Resilience to Semantics-Preserving
Transformations
If the WMS technique is resilient, comparing two JARs should
not be affected by semantics-preserving transformations. To
measure the impact of semantics-preserving transformations on
the WMS technique, Pro Guard [14], Smoke Screen [21] and
ZKM [22] were used to apply semantics-preserving
transformations to JUnit. Then, the original JUnit JAR was
compared with the obfuscated ones.

The WMS technique exhibited strong resilience to semantics-
preserving transformations applied by the three obfuscators.

Figure 6. Obfuscation Impact

Nevertheless, being able to resist to well-known obfuscators does
not mean that attacks on the WMS technique are impossible. Any
semantics-preserving transformations that alter the method
signatures such as reordering the parameters or promoting eligible
instance methods to static would prevent the WMS technique
from working properly.

Also, splitting a JAR into smaller ones or removing unused
methods from the bytecode (a practice known as shrinking) would
reduce the selectivity of the JAR. Such operations affect the
accuracy of the certainty percentage yielded by the WMS
technique. However, detecting a copy relationship in these cases
would still be possible by using the reverse certainty percentage
and the list of the 10 best class matches included in the contextual
information.

4.4 Running Time Scalability
In order to be scalable, the time required by the WMS technique
to compare two JARs must grow linearly when the size of JARs
increases. Because most of the information contained in a JAR is
not included in a fingerprint, the physical amount of memory
required to store a JAR is not a good indicator of the size of a
JAR. WMS fingerprints mostly contain information on method
signatures. Thus, the number of methods contained in a JAR is a
better size indicator from the perspective of the WMS technique.
For the 225 comparisons performed in the credibility experiment,
the relation between the number of methods to compare and the
time required to perform the comparison was measured.

The results demonstrated that the average case running time
complexity of the WMS technique tended to be O(n) (linear).
Also, less than 10 seconds were required to compare the largest
pair of JARs. Furthermore, the data gathered in the experiment
revealed that the time required to compare two JARs was much
shorter than the time required to create two fingerprints. The
WMS technique could take advantage of the fast speed of the
comparison when comparing multiple JARs. When the 30
fingerprints (2 sets of 15 fingerprints) were generated first and
reused for all the comparisons, the WMS technique required 25
seconds to generate the fingerprints and only 12 seconds to
perform the 225 comparisons.

Figure 7. Running Time Scalability

4.5 Memory Usage Scalability
In order to be scalable, the size of the fingerprints must grow
linearly when the size of the JARs increases. As explained in the
previous experiment, the best size indicator of a JAR is the

number of methods it contains. The relation between the number
of methods contained in a JAR and the size of the fingerprint was
used to measure the memory usage scalability of the WMS
technique.

The results confirmed that the average case memory usage
complexity of the WMS technique was O(n) (linear). However,
the sizes of large fingerprints such as Jython and Azureus were
close to one megabyte.

Figure 8. Fingerprint Memory Usage Scalability

5. CONCLUSION
A fingerprint technique that uses method signatures to compare
JARs was presented in this paper. This technique recognizes that
uncommon method signatures are more selective than common
ones. The WMS technique cannot compare classes with low
selectivity. Nevertheless, it is well suited to compare most JARs.
The results of the experiments demonstrated that the WMS
technique provided good trade-offs between the conflicting goals
stated in the paper. The technique is cohesive enough that it could
be included in a fingerprint framework such as the Stigmata Java
Birthmark Toolkit.

6. REFERENCES
[1] Myles G. and Collberg C. 2005. K-gram Based Software

Birthmarks. 2005 ACM Symposium on Applied Computing
(March 13-17,2005, Santa Fe, New Mexico, USA)
https://mailserver.di.unipi.it/ricerca/proceedings/AppliedCo
mputing05/PDFs/papers/T07P02.pdf

[2] Ibid.

[3] Stigmata - http://stigmata.sourceforge.jp

[4] JBirth - http://se.naist.jp/jbirth

[5] SandMark - http://sandmark.cs.arizona.edu

[6] Vuze - http://www.vuze.com

[7] Ant - http://ant.apache.org

[8] Cobertura - http://cobertura.sourceforge.net

[9] Cobertura - http://cobertura.sourceforge.net

[10] CodeCover - http://codecover.org

[11] EclEmma - http://www.eclemma.org

[12] DbUnit - http://www.dbunit.org

[13] TMp3 - http://sourceforge.net/projects/tmp3

[14] Proguard - http://proguard.sourceforge.net

[15] Sandmark - http://sandmark.cs.arizona.edu

[16] JMock - http://www.jmock.org

[17] Jython - http://www.jython.org

[18] Junit - http://www.junit.org

[19] JEdit - http://www.jedit.org

[20] JExt - http://www.jext.org

[21] Smoke Screen - http://www.leesw.com/smokescreen

[22] ZKM - http://www.zelix.com

